?

Log in

No account? Create an account

zelenyikot


Открытый космос Зеленого кота

Космос ближе, чем кажется


Previous Entry Share Next Entry
Великая тайна лунной воды
zelenyikot


Есть ли вода в лунных морях? Этот вопрос не одно десятилетие волновал ученых. Эволюция взглядов на лунную воду прошла от морей и лунных обитателей в XIX веке к полной безводности в 1960-е годы. Только в последние десятилетия наука начинает получать данные, способные помочь с ответом.

Совместно с научно-популярным порталом Nplus1.ru рассказываем о непростых поисках лунной воды.

Долгое время Луну изучали только методом прямого наблюдения с Земли. Первые оптимистичные ожидания и низкокачественные телескопы оставили «моря», «заливы», и «болота» на лунных картах. Улучшение же оптики показало Луну сухим безжизненным телом.

Космическая эра открывала новые перспективы изучения естественного спутника Земли. Луне повезло оказаться относительно близко к Земле. Она стала ареной мирного противостояния двух человеческих сверхдержав. «Лунная гонка» между СССР и США не только продвинула космические технологии, но и обеспечила прорыв в исследованиях Луны.

Правда вопросы о воде остались. В доставленном американскими астронавтами лунном грунте обнаружилось содержание до 1% воды, но ученые NASA не были готовы принять даже такой факт, противоречащий тогдашним представлениям о Луне. Американцы опасались, что влага могла попасть в образцы за время их нахождения в космическом корабле при возвращении на Землю. Добытый советский лунный грунт также показал незначительное содержание воды — около 0,1%, и эти результаты были опубликованы в 1978 году, но в те годы мировая наука не отнеслась к ним с должным вниманием. В то время считалось, что в процессе своего формирования Луна проходила этап высокого нагрева, активного вулканизма и вся вода должна была улетучиться миллиарды лет назад.



Проведенные в программе Apollo сейсмические эксперименты подтверждали гипотезы сухой Луны. Удары использованных ракетных ступеней и космических кораблей о поверхность земной соседки приводили к «звону как колокол» в недрах, который регистрировали размещенные сейсмометры. Сейсмические волны не утихали десятки минут, подтверждая модели полностью сухой Луны — вода придает пластичность недрам, из-за чего в них быстро гаснут сейсмические волны.

Новый этап поисков лунной воды начался в 90-е годы. Малый космический аппарат Clementine, запущенный к Луне американскими учеными и военными в 1994 году, провел радарный эксперимент для поиска водяного льда у лунных полюсов. Суть эксперимента состояла в облучении теневых участков полюсов радиоволнами от бортового радиокомплекса Clementine, и приеме отраженных волн 70-метровой антенной системы Дальней космической связи NASA на Земле. Изучение интенсивности и поляризации отраженных радиоволн позволили утверждать об открытии залежей льда у южного полюса в объеме около 1 кубического километра. Однако попытки воспроизведения результатов эксперимента при помощи 300-метровой антенны радиотелескопа Arecibo результатов не дали.

В дальнейшем именно полюса привлекали внимание ученых в поисках лунной воды, поэтому надо пояснить почему ищут именно там. Луна вращается вокруг Земли по орбите с наклоном около 5 градусов к плоскости эклиптики, в которой вращаются все околосолнечные планеты. Наклона вращения Луны вокруг своей оси практически нет, поэтому в некоторые глубокие полярные кратеры солнце не заглядывает никогда и там сохраняется температура поверхности -230°С. Освещенная же лунная поверхность в полуденное время может нагреваться до 150°С, то есть сохранение льда практически невозможно. Вода на поверхности Луны могла оказаться в результате извержения вулканов в составе вулканических газов или в результате падения комет или астероидов, содержащих воду. Во всех случаях испаренная вода и другие летучие газы формировали временную лунную атмосферу, которая конденсировалась в холодных полярных кратерах. Что не успело сконденсироваться улетучивалось в космос, и так могло повторяться неоднократно, т.е. залежи лунной воды и других летучих соединений могли бы рассказать о древней истории нашего спутника.



Другой механизм появления воды в приповерхностном слое Луны может быть связан с постоянной бомбардировкой частицами солнечного ветра. В основной своей массе, солнечный ветер — это поток протонов, которые и есть ядра атомов водорода. Встречаясь с атомами кислорода в грунте Луны, протоны могут формировать молекулы гидроксильной группы (OH) и воды (H2O).

Зонд NASA Lunar Prospector отправился на окололунную орбиту в 1998 году для подтверждения результатов Clementine и нес на борту новый прибор, способный обнаруживать воду — нейтронный спектрометр. Принцип его работы состоит в регистрации и измерении энергии и скорости вылетающих с лунной поверхности элементарных частиц — нейтронов. Нейтроны выбиваются тяжелыми заряженными космическими частицами из лунного грунта с глубины до 1 метра. Нейтроны замедляются атомами водорода, поэтому их скорость вылета с поверхности Луны зависит от концентрации водорода в грунте. Водород в свободной форме в грунте безатмосферного тела не задержится поэтому он должен находиться в химической связи в том числе в виде воды.

Нейтронный спектрометр Lunar Prospector определил повышение концентрации водорода в поверхности Луны у полюсов, по его данным массовая доля воды в приполярных регионах может достигать 3-4%.



Радиофизики NASA решили взять лунный реванш после неудачи с Clementine при помощи индийского зонда Chandrayaan 1, на который разместили небольшой зондирующий радар Mini-SAR. В отличие от Clementine ему не требовались наземные станции чтобы принимать отраженный сигнал, поэтому разрешающая способность и детализация изображений была намного выше. Прибор генерировал радиоволну круговой поляризации и оценивал характеристики отраженного от грунта сигнала. Mini-SAR «просвечивал» не глубже 40 см, позволяя определять разницу в структуре поверхности, и содержании в ней льда. Чтобы «взглянуть» глубже ученые уделяли внимание прежде всего молодым метеоритным кратерам, который обнажали залегающие ниже слои. Оказалось, что на радиоизображениях ярче выделяются грубые обломки породы, и столь же яркими должны быть залежи льда, смешанные с грунтом. Отличить по данным Mini-SAR кратеры с каменистой поверхностью и содержащие водяной лед не представлялось возможным, но хорошую подсказку дала разбросанная из кратера порода. Там где окрестности кратера такие же яркие, как и его внутренняя часть, там, скорее всего просто каменные обломки. Там же, где яркость внутреннего пространства полярного кратера сильно контрастирует с окружающей поверхностью, там более вероятно залегание водяного льда.



На борту Chandrayaan 1 размещался и оптический прибор — мультиспектральный сканер Moon Mineralogy Mapper. Его задачей было картографирование распространения различных минералов на поверхности Луны. С его помощью обнаружили и распространение минералов богатых гидроксилом и водой, причем, в отличие от других данных — не только в приполярных областях. Недавно опубликовали новые результаты Moon Mineralogy Mapper, которые обобщили все собранные им данные и оказалось, что в радиусе 20° от полюса обнаруживаются множество отложений водяного льда, массовая доля которых в грунте достигает 40%.



Расставить все точки над «i» должен был следующий аппарат NASA — Lunar Reconnaissance Orbiter, запущенный в 2008 году. Его оснастили «полным пакетом» разведчика воды: радаром, ультрафиолетовым спектрометром и нейтронным детектором.

Нейтронный детектор LEND спутника LRO — российской разработки и производства. Прямой потомок детектора HEND, который сумел обнаружить и картографировать залежи марсианской воды во время работы на зонде Mars Odyssey. LEND — следующее поколение нейтронных детекторов, имеет повышенную точность по сравнению с детектором Lunar Prospector и Mars Odyssey. Российский лунный прибор оснащен так называемым «коллиматором» — ограничителем, который позволяет на порядок сузить поле сканирования, а значит повысить разрешающую способность прибора, то есть увидеть мелкие географические подробности в распределении воды в верхнем метре лунной поверхности.



LRO дал возможность увидеть испарения воды над Луной, при помощи отработанного еще в программе Apollo метод ударного воздействия на Луну. Ударным средством стал разгонный блок Centaur, который доставил LRO к Луне. Дополнительно на Centaur был размещен отдельный исследовательский аппарат LCROSS, который летел сразу за разгонным блоком, и должен был проанализировать вспышку и выброс от его падения в кратере Кабеус. LCROSS сумел зарегистрировать линии водяного пара в спектре ударной вспышки, однако выброс оказался в несколько раз слабее чем ожидалось. Все попытки наблюдать вспышку с Земли, даже в самые большие телескопы, оказались неудачны. К тому же, сам Centaur содержал остатки кислород-водородного топлива, поэтому они могли внести искажения в итоговые результаты, хотя сами ученые такую ошибку исключают. По данным LCROSS, в грунте Кабеуса содержалось около 5% воды.

За несколько лет работы LEND сумел собрать данные о распределении водорода в поверхности Луны как в обычном режиме, там и через коллиматор. Привычный режим исследования, когда детектор принимает нейтроны летящие во всех сторон, показал результаты сходные с Lunar Prospector. А вот коллиматор принес сюрприз. Как оказалось, концентрация воды в грунте у лунных полюсов далеко не всегда соответствует низинам и донной части кратеров. LEND сумел определить высокое содержание водорода на приполярных возвышенностях, и, наоборот, практически полное его отсутствие в некоторых глубоких кратерах. Правда все эти колебания от «мало» к «много» проходили в пределах 1% по массе воды в грунте.



Добавил интриги еще лазерный высотомер LOLA на том же спутнике LRO. На дне одного из самых глубокий кратеров Южного полюса Луны обнаружилась поверхность с очень высокой отражающей способностью. Всё выглядит так, будто до 22% донной части кратера покрыто водяным льдом.

Таком образом, вода на лунный полюсах за 25 лет исследований из смелой догадки превратилась в многократно подтвержденный факт. Однако еще много остается вопросов без ответа. Пока сложно сказать каково происхождение этой лунной воды, каков объем запасов, и в какой форме она сохраняется в таком негостеприимном космическом теле. На эти вопросы могли бы ответить спускаемые аппараты, способные исследовать поверхность непосредственно. К сожалению, пока такие проекты откладываются. Российский спускаемый аппарат «Луна-25» не полетит раньше 2021 года, а запуск индийского Chandrayaan 2 сдвигается на 2019-й. Позже к Луне должен отправиться следующий российский спускаемый аппарат «Луна-27», оборудованный буровой установкой, которая попытается добыть грунт с глубины 1-2 метра и определить содержащиеся летучие соединения.

Смысл поиска лунной воды связывается с перспективами будущей обитаемой лунной станции, которая могла бы использовать местную воду для бытовых и технических нужд людей, в том числе для выработки ракетного топлива.

Подготовлено для Nplus1.ru, публикуется в авторской редакции.

zelenyikot

Финансово поддержать выход новых материалов можно через сервис Patreon.
Другие способы
оказать поддержку.

Чтобы не пропускать новые посты, подпишитесь на мои страницы:
в ЖЖ, Facebook, Вконтакте, Twitter.



promo zelenyikot september 5, 07:45 77
Buy for 800 tokens
Наконец-то я могу официально объявить, что в продаже появилась научно-популярная книга моего авторства об исследовании Солнечной системы автоматическими межпланетными станциями. Здесь можно найти как описание отдельных космических миссий последних лет, так и обобщенные результаты исследований…

  • 1
Озера вряд ли - сейсмология показывает сухие недра. Так что если и есть, то тоже в пределах 5%

А что, при вышеупомянутых -35 цельсия лёд сильно пластичнее "сухих" пород с точки зрения сейсмологии?

Ну вы же понимаете что разрешение лунной сейсмологии... ну не очень высокое прям скажем. Врятли мы там обнаружим подземный Байкал, но локальные скопления воды, тянущие на приличное озеро - вполне можем и не заметить с таким разрешением-то.

Можем и не заметить, но маловероятно что вода туда соберется при таком незначительном распределении в недрах. Если только в каких-то уникальных местах, типа гейзеров у вулканов.

А активный вулканизм на Луне подтвержден?

Парения центральных горок кратеров отмечались несколько раз в телескопы.

Edited at 2018-09-07 03:27 pm (UTC)

  • 1